Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C52⋊C4

Direct product G=N×Q with N=C2 and Q=C2×C52⋊C4
dρLabelID
C22×C52⋊C440C2^2xC5^2:C4400,217


Non-split extensions G=N.Q with N=C2 and Q=C2×C52⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C52⋊C4) = C20.11F5central extension (φ=1)404C2.1(C2xC5^2:C4)400,156
C2.2(C2×C52⋊C4) = C4×C52⋊C4central extension (φ=1)404C2.2(C2xC5^2:C4)400,158
C2.3(C2×C52⋊C4) = C2×C525C8central extension (φ=1)80C2.3(C2xC5^2:C4)400,160
C2.4(C2×C52⋊C4) = C528M4(2)central stem extension (φ=1)404C2.4(C2xC5^2:C4)400,157
C2.5(C2×C52⋊C4) = C202F5central stem extension (φ=1)404C2.5(C2xC5^2:C4)400,159
C2.6(C2×C52⋊C4) = C5214M4(2)central stem extension (φ=1)404-C2.6(C2xC5^2:C4)400,161
C2.7(C2×C52⋊C4) = C1024C4central stem extension (φ=1)204+C2.7(C2xC5^2:C4)400,162

׿
×
𝔽